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Application of direct iterations, based on convergent splittings, to the eigenvalue 
problem of large sparse symmetric matrices is discussed. A general convergence proof is 
given, and it is shown how parameters should be chosen to give the best rate of con- 
vergence. As special examples are considered, SOR iteration and iteration based on the 
use of a fast direct Poisson solver. Numerical tests are reported. 

1. INTRODUCTION 

In the present contribution we set out to find the smallest eigenvalue and the 
corresponding eigenvector of the problem 

(A - XB) x = 0, (l-1) 

where A is symmetric and B is positive definite. We order the eigenvalues Xi so that 

A, < A, < --* < A, 

and denote the corresponding B-normalized eigenvectors 

We are interested in cases when the matrices are large and sparse so that trans- 
formation methods, such as the QR-method [4] or Rayleigh quotient iteration [7], 
are not conveniently applicable, and we have to rely upon some kind of direct 
iteration. Methods of this kind are generally not as powerful, since they have only 
a linear rate of convergence and do not give a complete set of solutions to (l.l), 
but on the other hand they do not destroy the sparsity of A and B and give short 
and simple programs. 
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A direct iteration is an extension of the simple power method which computes a 
sequence of vectors 

x1 ) x2 )...) x, -+ c * 24, , (1.2) 

where C is a real constant, and corresponding Rayleigh quotient approximations to 
the eigenvalue 

The basic power method has been improved by iterating in subspaces [12], ortho- 
gonalizing the iterates in a systematic manner as in the Lanczos [6, 81 or c.g. 
methods [9, 10, 141, and finding a related matrix iteration with faster convergence 
as in SOR methods [13, 1 I]. Here, we concentrate on this last class of algorithms. 

These algorithms all depend on a splitting of the matrix 

A -psB= V,---s, (1.4) 

where V, is easy to invert and H, has small norm. We will specially consider the 
case when A is a finite difference approximation to an elliptic partial differential 
equation, and study how the powerful direct methods applicable to this class of 
matrices [3,2] can be utilized in eigenvalue calculations. 

In Section 2 we show how the splitting (1.4) can be used to formulate an 
algorithm, and under which conditions the vectors X, (1.2) and values ps (1.3) 
computed will converge toward u1 and h, . We show in a few cases that it is relati- 
vely easy to make sure that these conditions are fulfilled. In Section 3 we study 
how the splitting (1.4) should be made to give the fastest possible rate of convergen- 
ce. The theory is similar to that in the linear equations case [2, 15-171, but there are 
some interesting complications. We conclude in Section 4 by stating results on a 
numerical example. We have given several reports before on iterative methods 
[9-111, but the application of direct methods to difference-type matrices is new 
here, It is worth emphasizing, however, that the theoretical results of this paper 
are applicable to all algorithms based on a convergent splitting (1.4). 

2. FORMULATION OF THE ALGORITHMS 

The algorithms we consider here will compute a sequence of vectors (1.2) which 
should converge to an eigenvector and a sequence of eigenvalue approximations 
(L3). 

The vectors are computed by means of the splitting (1.4) as 

x s+l = V;1H8x, = x, - V;‘(A - pJ) x, = x, - ps . (2.1) 



112 AXEL RUHE 

We have, to choose V, so that it is easy to invert, while H, has to have a small 
norm. We are mainly interested in the smallest eigenvalue of (1. l), and therefore 
we seek a condition for the sequence ps to decrease. 

THEOREM 1. If we choose the splitting (1.4) so that 

hnintt~s + H,) + (V, + HJH) = 28 > 0 (2.2) 
and 

II vs II < M, (2.3) 
then 

l-b+1 < Ps (2.4) 
and 

lim (A - ~3) x,/II x, IIB = 0. A-+m (2.5) 

This implies that when h, is simple and x1 is chosen so that p1 < h, we get conver- 
gence to the lowest eigenvalue of (1,l). 

Proof (see [ll]). From the definition (1.3) of the Rayleigh quotient we see that 

Ps+1 - Ps = ((A -/do Xsi-13 xs+1Yws+1,~,+1). 

We can use the recurrence (2.1) to single out the cases when this difference is 
negative. 

We denote 
C, = A - /LOB 

and expand (note that (Cax,, x,) = 0 and Csx, = VSp,): 

tcsxs+1, x,+1) = (a& - PS), x5 - PS) 

= -(GP, 9 XS) - (G-G 2 PS) + (GP, > PS) 

= -(Ps 9 VSPJ - W,P, 9 Ps) + W, - H,) PC?, PS) 

= -K(Ps 2 V.8 + %) PS) + W, + HS) PS 9 PS)> 

< --6 II P* II2 < 0, 

provided that (2.2) is fulfilled. 
Since ps > A, we can conclude that 

II PS 112/11 x,+1 IIZI 3 0, 

which implies that 

(2.6) 
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since V, are assumed to be bounded uniformly in s (2.3). Note that 

II P.3 II/II X8 IIB = IIPS II/II x,+1 + P.3 IIB 

G II Ps II/(11 x,+1 Ila - II Ps Ile) < 2 II Ps II/II x,+1 IIB 

as SoOn as II ps II8 < 3 II xs+l IL , which eventually will hold by (2.6). 
Now consider some special examples of splittings. 

EXAMPLE 1. SOR splitting. Here, 

A - psB = D, - E, - F, , 

where E, is strictly lower and F, strictly upper triangular and D, diagonal. 
We take 

V, = (lb) D, - Es, 
H, = Kl/~) - 11 D, + F, 

and see that the conditions for convergence are fulfilled if 

and the starting vector x1 is chosen so that 

(See [I I].) 

EXAMPLE 2. Poisson solver. Now we restrict the class of matrices to 

A-/L~B= -Ah+P--J, (2.7) 

where A, is the five-point difference approximation to the Laplacian in two dimen- 
sions 

A=&$ 

over a rectangular region, and P is a diagonal matrix. For a range of values of the 
scalar K, it is possible to invert -A, + KI [3] and thus we can take 

V, = -4 + KJ, (2.8) 

H, = KJ - P +- pJ. (2.9) 

We can use the minimax property of the eigenvalues to get an interval for K, where 
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we are assured of convergence. We note that the eigenvalues of our problem (2.7) 
are majorized by the eigenvalues of 

-Ll,+F-AI=O, P = PI, j = IllFXpii. (2.10) 

From this we can conclude that H, + V, is positive definite whenever 

K, 3 F - A, . (2.11) 

If furthermore, x8 has a smaller Rayleigh quotient (1.3) than ps , an assumption 
that is natural to make, we can take 

Ks3P-ps, (2.12) 

which has the advantage over (2.11) that it contains only computable quantities. 

3. RATE OF CONVERGENCE 

We will now see how we shall choose parameters in the splitting to get the 
fastest rate of convergence locally. In most cases the algorithms have linear 
convergence, and then the rate is determined by 

R = lim.r~up 1) P, \j1/r, 

where r^, is the normalized residual 

r^, = (Ax, - PsW/ll xs II2 * 

If we suppose that the splitting depends only on A, B, and ps so that 

v, = v,4 - psvL9, 
H,=H, ---p&t, 

we can use the fact that the eigenvalue approximations pS converge much faster 
than the eigenvector approximations f, (see, e.g., [9]), to state: 

THEOREM 2. The asymptotic rate of convergence of (2.1) is determined by the 
convergence of the limiting linear iteration 

where 
x s+1 = X8 - V-l(A - A$) x, = Mx, ) (3.1) 

X,=limpIl, 
v= VA--XlVB. 
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Proof. See the corresponding proof in [I l] covering a slightly more general 
case. 

We note that 

Mu, = 24, - v-l(A - AIB) 24, = Ul , 

so u1 is an eigenvector of A4 corresponding to the eigenvalue 1. The rate of con- 
vergence is determined by the other eigenvalues so that 

R = y$~ I UWI. 
Since 

M= I- V-l(V- H)= V-lH, 

we can in some situations use the fact that the eigenvalues p of M are eigenvalues of 

(H-pV)x=O. (3.2) 
Especially we have: 

THEOREM 3. Let H and V be symmetric, and V, furthermore, positive definite, 
and denote by hi and vi the eigenvalues of 

(H-hhiB)x=O, h,<...<h,>O; 

(V- ViB) x = 0, 0 < Vl < v2 -** < v, . 

If the spread of H is limited so that 

hn - hl -= A, - A1 , (3.3) 

then the limiting iteration converges and the rate is bounded by 

h, x2 _ A1 + hl < Pn < .‘. < P2 G hn 
h, - A, + 4 ’ 

Proof: Take a Rayleigh quotient of (3.2), and vary the vector over all vectors 
that are V-orthogonal to u1 , 

(Hx, 4 W% MBx, 4 h, hn 
~ = (Vex, x)/(Bx, x) (V& 4 ’ 6 ’ A, - A, + h, ’ 

since A - &B = V - H, which implies that 

hl + Al, - AI < ok < h, + hk - A,, 

by the minimax principle. This proves the second inequality and the first is an 
immediate consequence, if we assume that the denominator is positive. 
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In this case it is possible to develop a theory parallel to that for the precondi- 
tioning of linear systems (see, e.g., [16]); that is, we shall choose the splitting so 
that the condition number 

K = (1 -P&U -Pz) (3.5) 

is minimized. We can then either choose an iteration parameter T in the damped 
iteration 

x .s+1 = xs - TPS 

so that pz = -pla = R, or use conjugate gradient or Chebyshev acceleration over 
the interval (p, , pz) (see [2, 16, 171). 

Let us consider the examples discussed in the foregoing section: 

EXAMPLE 1. SOR methods. If C = A - h,B satisfies property A, then w can 
be chosen so that n - 2 of the eigenvalues of M are situated at the circle / z 1 = 
w - 1, so that R = w - 1 for w greater than 

a, = Z/(1 + (1 - p2y), 

where pk are the eigenvalues of the Jacobi iteration matrix corresponding to C. We 
have also made extensive tests of this algorithm for cases when property A is not 
fulfilled (see our earlier report [ 111). Since the splitting is nonsymmetric we cannot 
apply Theorem 3. 

EXAMPLE 2. Poisson solver. When we have a problem of the form (2.7) and 
split it as (2.8) and (2.9) the situation is rather similar to the case when a non- 
separable elliptic equation is solved by means of a Poisson solver [2]. 

Choosing the shift 
&=P--ELs (3.6) 

(cf. (2.12)), we see by (2.9) that 

hl = p - m?xp,, , 

h, =p - mfnpii, 

and for a P with a limited spread (3.3) we can apply Theorem 3. Any choice ofp in 
the range of pii is reasonable; we have used 

p1 = S<my ~ri + m$ ~ti) (3.7) 
and 

pz = eTPe/eTe (3.8) 

on different occasions. We note that, exactly as in the nonseparable case [2, 171, 
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the estimates obtained are essentially independent of the discretization. The 
expected number of iterations depends only on the separation &, - h, of the eigen- 
values, and the properties of P. 

4. A NUMERICAL EXAMPLE 

Tests of the SOR methods have been reported before, therefore we concentrate 
on the algorithm based on a Poisson solver. We have used a program published in 
[l] to solve the linear equations. 

The test problem we consider is the Schriidinger equation in two dimensions, 

-A$+P++=O, 

where P is a potential function having negative values, in interesting cases so large 
that A1 < 0, which gives rise to bound states (see [5]). 

For a rectangular region with Dirichlet boundary conditions on all sides, we 
used a 15 x 21 mesh, h = l/16 (n = 315). In Table I we list results of the algorithm 
(2.7)-(2.8) with the shift chosen as in (3.6) and (3.7) for the case P = 0, and in 
Table II with P having three holes, each with a diameter of 3, and P varying between 
p = -100 and p = 0.0. We note that the convergence is fast indeed, since each 
iteration of this algorithm is equivalent to a few SOR steps. For the case P = 0 and 
a 15 x 21 mesh, SOR needed 54 iterations to converge. 

The plots show the eigenvectors: Fig. 1 in the case P E 0, Fig. 2 when P has 
three holes. 

TABLE I 

-Aq3 - kj = 0 with h, = 0.05878656 

Iteration 

0.712. 10-l 
0.239 - 10-l 
0.174 
0.256 
0.265 
0.261 
0.163 
1.15 

0.102 
0.515 * IO-8 
0.114 * 10-a 
0,288 . 1O-s 
0.759 . lO-4 
0.202 * 10-4 
0.543 . 10-b 
0.146. 1O-6 
0.392 * 10-O 

Note. h = 1/16,&x, y) = 0 on the boundary 
Il~ll~ = &A + WM, 6’ = L 1, . . . . 11. 



118 AXEL RUHE 

TABLE II 

--d4 f P4 - A$ = 0 with A1 = 0.02910283 

Iteration 
II 48 - 4.-l IlLI 

II 4*-1 - 4a-a lld 
II (A - P + W4, IIs 

1 0.215 

2 0.731 . 10-l 0.215 .10-l 

3 0.447 . IO-’ 0.588 * 1O-z 

4 0.336 0.217 * 1O-8 

5 0.372 0.972 . 1O-8 

6 0.415 0.454 * IO-8 

7 0.456 0.213 . 1O-8 

8 0.467 0.100. 10-J 

9 0.468 0.470 . 10-a 

10 0.469 0.221. lo-’ 

11 0.458 0.104 * 10-a 

12 0.455 0.486 - lo-& 

13 0.227 0.228 * lo-& 

14 1.48 0.107 * 10-B 

15 0.302 0.503 * 10-e 

Note. See Table I, Note. 

FIGURE 1 
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FIGURE 2 
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